A Cohesin-Based Partitioning Mechanism Revealed upon Transcriptional Inactivation of Centromere.

نویسندگان

  • Michael Tsabar
  • Julian Haase
  • Benjamin Harrison
  • Chloe E Snider
  • Brittany Eldridge
  • Lila Kaminsky
  • Rebecca M Hine
  • James E Haber
  • Kerry Bloom
چکیده

Transcriptional inactivation of the budding yeast centromere has been a widely used tool in studies of chromosome segregation and aneuploidy. In haploid cells when an essential chromosome contains a single conditionally inactivated centromere (GAL-CEN), cell growth rate is slowed and segregation fidelity is reduced; but colony formation is nearly 100%. Pedigree analysis revealed that only 30% of the time both mother and daughter cell inherit the GAL-CEN chromosome. The reduced segregation capacity of the GAL-CEN chromosome is further compromised upon reduction of pericentric cohesin (mcm21∆), as reflected in a further diminishment of the Mif2 kinetochore protein at GAL-CEN. By redistributing cohesin from the nucleolus to the pericentromere (by deleting SIR2), there is increased presence of the kinetochore protein Mif2 at GAL-CEN and restoration of cell viability. These studies identify the ability of cohesin to promote chromosome segregation via kinetochore assembly, in a situation where the centromere has been severely compromised.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Kinetochore Receptor for the Cohesin Loading Complex

The ring-shaped cohesin complex brings together distant DNA domains to maintain, express, and segregate the genome. Establishing specific chromosomal linkages depends on cohesin recruitment to defined loci. One such locus is the budding yeast centromere, which is a paradigm for targeted cohesin loading. The kinetochore, a multiprotein complex that connects centromeres to microtubules, drives th...

متن کامل

Cohesin-Dependent Association of Scc2/4 with the Centromere Initiates Pericentromeric Cohesion Establishment

Cohesin is a conserved ring-shaped multiprotein complex that participates in chromosome segregation, DNA repair, and transcriptional regulation [1, 2]. Cohesin loading onto chromosomes universally requires the Scc2/4 "loader" complex (also called NippedBL/Mau2), mutations in which cause the developmental disorder Cornelia de Lange syndrome in humans [1-9]. Cohesin is most concentrated in the pe...

متن کامل

Temporal sequence and cell cycle cues in the assembly of host factors at the yeast 2 micron plasmid partitioning locus

The Saccharomyces cerevisiae 2 micron plasmid exemplifies a benign but selfish genome, whose stability approaches that of the chromosomes of its host. The plasmid partitioning locus STB (stability locus) displays certain functional analogies with centromeres along with critical distinctions, a significant one being the absence of the kinetochore complex at STB. The remodels the structure of chr...

متن کامل

Histone H3-variant Cse4-induced positive DNA supercoiling in the yeast plasmid has implications for a plasmid origin of a chromosome centromere.

The Saccharomyces cerevisiae 2-μm plasmid is a multicopy selfish genome that resides in the nucleus. The genetic organization of the plasmid is optimized for stable, high-copy propagation in host-cell populations. The plasmid's partitioning system poaches host factors, including the centromere-specific histone H3-variant Cse4 and the cohesin complex, enabling replicated plasmid copies to segreg...

متن کامل

Cohesinopathy mutations disrupt the subnuclear organization of chromatin

In Saccharomyces cerevisiae, chromatin is spatially organized within the nucleus with centromeres clustering near the spindle pole body, telomeres clustering into foci at the nuclear periphery, ribosomal DNA repeats localizing within a single nucleolus, and transfer RNA (tRNA) genes present in an adjacent cluster. [corrected] Furthermore, certain genes relocalize from the nuclear interior to th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • PLoS genetics

دوره 12 4  شماره 

صفحات  -

تاریخ انتشار 2016